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The recent application of antibody catalysis to the area of
disfavored chemistry is one of the most significant contributions
to have emerged from this rapidly expanding subject. Notable
achievements to date include the reversal of kinetic control in
reactions such as ring-formations,1 Diels-Alder cycloadditions,2
cationic cyclizations,3 and eliminations.4 Herein we describe
and characterize an antibody which effectively reroutes aryl
carbamate ester hydrolysis through the highly disfavored BAc2
pathway.
Aryl carbamate ester hydrolysis is known to occur dominantly

Via an E1cB mechanism, while the BAc2 pathway involving a
tetrahedral intermediate (Scheme 1) operates effectively only
for carbamate esters lacking an ionizable N-H group.5 The
difference in the relative rates of these two alternative mecha-
nistic processes has been studied extensively by Hammettσ-F
relationships,6 inverse deuterium isotope effects,5 trapping of
reactive intermediates,7 and the use ofN,N-disubstituted aryl
carbamate esters.8 Hammett correlations of the exponent of the
rate constant for hydroxide promoted E1cB hydrolysis with the
parameterσ for N-monosubstituted aryl carbamates6a,7b have
given F values of+2.87 and+3.16. By contrast, the linear
free energy analysis forN,N-disubstituted aryl carbamate ester5d

and aryl ester8 hydrolyses (both of which proceedVia a BAc2
mechanism) giveF values of+1.24 andca. +1.0, respectively.
In the present study we have synthesized phosphonamidates

1a and 1b as haptens for the production of monoclonal
antibodies capable of hydrolyzing thep-nitrophenyl N-aryl
carbamate2a (Figure 1). While2ahydrolyzes rapidly9 Via the
E1cB mechanism, the rate of its BAc2 hydrolysis is immeasur-
ably small but can be estimated from the rate of hydrolysis10 of

its N-Me derivative3a. The ratio of these rates isca. 108, a
value entirely consistent with previous comparisons of the E1cB
and BAc2 rates of hydrolysis of substituted carbamates.5c,d

Haptens1aand1b have three key features. First, in common
with previous strategies for the elicitation of antibodies that
catalyze BAc2 hydrolysis reactions,11 the inclusion of a tetra-
hedral phosphoryl core was considered essential. Second, the
phenolic oxygen of the substrate was replaced with a benzylic
methylene moiety in the haptens1a and 1b to minimize
recognition of phenolate anion character known to be a prime
feature of the E1cB transition state.6a Third, the glutaric acid
linker was appended at the para-position of the benzylphos-
phonate group in both haptens with the expectation of eliciting
an antibody with little or no recognition of this feature in its
substrates as supported by previous work in the catalytic
antibody field, including X-ray crystal structure analysis.12 Such
an antibody could then be used in a Hammett correlation of
reactivity for a series ofp-substituted-phenyl carbamate esters.
This analysis, a focal postulate of our design, allows for a
mechanistic differentiation of the catalytic antibodies, because
it is clear that the E1cB process is much more dependent on
the leaving group ability than the disfavored BAc2 process.
Haptens1aand1bwere synthesized13 and conjugated to the

carrier protein keyhole limpet haemocyanin (KLH) for im-
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Scheme 1.Duality of Mechanism for Carbamate Ester
Hydrolysisa

aMechanistic studies have shown that the rate of alkaline hydrolysis
Via the BAc2 process is up to 108 times slower than for the E1cB process
(dependent on substitution in the aryl ring).5,6

Figure 1. Phosphonamidate haptens1a and 1b were used for the
generation of antibodies for the hydrolysis of the carbamate substrate
2a. Modified hapten1cwas used for inhibition studies. The carbamates
2b-e were used as a range of substrates to support a Hammettσ-F
correlation (see Table 1). The rate of hydrolysis of theN-methyl
carbamate3awas used to estimate akapp for the BAc2 hydolysis of2a.
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munization purposes. Fifty monoclonal antibodies specific for
1a and1b were tested for catalysis. The rate of hydrolysis of
2awas assayed in 2-(N-morpholino)ethanesulfonic acid (MES,
pH 6.5,I ) 1.0) at 288 K, with 4% dimethyl sulfoxide (DMSO)
both in the presence and absence of antibody.14 The most active
of these, DF8-D5,15 raised against hapten1a, effects hydrolysis
of 2a with Michaelis-Menten kinetics and withKm 120 µM
andkcat 18 min-1. This catalytic activity is stoichiometrically
inhibited by hapten1c.
Catalytic and spontaneous rate constants (kcat, kuncat) for a

series ofp-substituted-phenylN-aryl carbamates2a-ewere then
determined and plotted againstσ/σ- of the phenol leaving group
to determine the HammettF value for the antibody catalyzed
reaction (Table 1 and Figure 2).16 The difference in the slopes
of the hydroxide (F ) +2.68) and DF8-D5 (F ) +0.53)
catalyzed hydrolyses of the carbamates (2a-e) clearly estab-
lishes a major mechanistic difference between the antibody
catalyzed and spontaneous processes: the value ofF for the
hydroxide mediated hydrolysis is typical for an E1cB mecha-
nism, while that for the DF8-D5 process is characteristic of a
BAc2 mechanism.
As antibodies are discovered that catalyze ever more difficult

processes, it becomes interesting to inquire whether there is a
limiting binding energy that can be supplied in an antibody
binding site to generate catalysis. Several workers have

estimated that up to 20 kcal mol-1 of binding energy may be
available.17 The most energetically demanding disfavored
process hitherto promoted by an antibody is that of asyn-
elimination,4 disfavored by 5 kcal mol-1. The present data18

estimates that for hydrolysis of the aryl carbamate2a there is
a free energy difference between the spontaneous E1cB and
BAc2 transition states of some 13 kcal mol-1. Thus, the
generation of a monoclonal antibody capable of catalyzing the
highly disfavored BAc2 mechanism of carbamate hydrolysis is
a major advancement in the catalytic antibody field.
The application of another antibody raised against hapten (1a)

for cleavage of a carbamate prodrug to effect human tumor cell
kill ex ViVo has been reported elsewhere.19
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Table 1. Kinetic Parameters for Spontaneous and DF8-D5
Catalyzed Hydrolysis of the Substituted Aryl Carbamates2a-e

substrate
groupY

kcat,
min-1

Km
a,

mM
kcat/Km,

mM-1 min-1
kuncatb,
min-1 kcat/kun

NO2 (2a) 18 120 0.15 6.0× 10-2 3.0× 103

Br (2b) 6 80 0.075 6.0× 10-4 1.0× 104

F (2c) 7.2 41 0.17 1.8× 10-4 4.0× 104

H (2d) 3.0× 10-5

MeO (2e) 4.9 58 0.08 4.2× 10-6 1.2× 106

a The kinetic measurements were all carried out at 14°C and pH
6.5 (50 mM MES).b The uncatalyzed rates were determined by
multiplication of the second-order rate constant (see Supporting
Information) by 1× 10-7.5 (the hydroxide ion concentration at pH 6.5).

Figure 2. Hammettσ-F correlation for the hydroxide catalyzed and
DF8-D5 catalyzed hydrolyses of the carbamate series2a-e at pH 6.5
(50 mM MES,I ) 1.0) and 288 K.

2316 J. Am. Chem. Soc., Vol. 119, No. 9, 1997 Communications to the Editor


